Search
๐Ÿ›๏ธ

Olist Store

์ƒํƒœ
In progress
Colab ๋งํฌ
Tools
Python
3 more properties

About Company

Olist Store is the e-commerce technology on the market that can multiply your sales in record time. Promote your products in up to 13 marketplaces with our technology and have more sales.
It is very easy, you register your products, place competitive prices and we take care of the rest. Once approved, your ads go to the most visited marketplaces in the country.
Olist serves small brick-and-mortar retailers, making products available in virtual stores within larger online marketplaces.
free of charge for any business. The app works as an online store that allows you to advertise any product or service. All it takes is a couple of clicks to download it, create an account, register your items and share the link with your client base. It also offers a WhatsApp integration to facilitate your communication with the users.
Those merchants are able to sell their products through the Olist Store and ship them directly to the customers using Olist logistics partners.
After a customer purchases the product from Olist Store a seller gets notified to fulfill that order. Once the customer receives the product, or the estimated delivery date is due, the customer gets a satisfaction survey by email where he can give a note for the purchase experience and write down some comments.
Olist Store ์€ ์˜คํ”„๋ผ์ธ ์‚ฌ์—…์ฒด(๊ฐœ์ธ์‚ฌ์—…์ฒด ํฌํ•จ)๋“ค์˜ ๋ชจ๋ฐ”์ผ ํ”Œ๋žซํผ์œผ๋กœ์˜ ์ „ํ™˜์„ ๋•๋Š” ์˜คํ”ˆ๋งˆ์ผ“๋ชจ๋ฐ”์ผ ์„œ๋น„์Šค๋ผ๊ณ  ์ƒ๊ฐํ•˜๋ฉด ๋œ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์˜ˆ์‹œ๋กœ ์„ค๋ช…ํ•˜์ž๋ฉด, ์ฟ ํŒก, 11๋ฒˆ๊ฐ€, ์ง€๋งˆ์ผ“ ๋“ฑ๋“ฑ์˜ ์˜จ๋ผ์ธ ๋งˆ์ผ“ ์„œ๋น„์Šค๊ฐ€ ๋„ค์ด๋ฒ„ ์‡ผํ•‘์— ๋“ค์–ด๊ฐ€๋ฉด ๋œจ๋Š” ๊ฒƒ๊ณผ ๊ฐ™์€ ๋А๋‚Œ์ด๋ผ๊ณ  ๋ณด๋ฉด ๋œ๋‹ค. ํ•˜์ง€๋งŒ, ๋„ค์ด๋ฒ„ ์‡ผํ•‘์—๋งŒ ๊ตญํ•œ๋˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๋‹ค๋ฅธ ์—ฌ๋Ÿฌ ์˜คํ”ˆ ๋งˆ์ผ“์—๋„ ๋ฟŒ๋ ค์ง„๋‹ค๋Š” ์˜๋ฏธ

About Brazilian E-Commerce Public Dataset by Olist ( from Kaggle )

The dataset has information of 100k orders from 2016 to 2018 made at multiple marketplaces in Brazil.
its features have order status, price, payment and freight performance(๋ฐฐ์†ก๋น„,๋ฐฐ์†ก์ƒํƒœ) to customer location, product attributes and finally reviews written by customers.
also released a geolocation dataset that relates Brazilian zip codes to lat/lng coordinates.
This is real commercial data, it has been anonymised, and references to the companies and partners in the review text have been replaced with the names of Game of Thrones great houses.(review ๋ฐ์ดํ„ฐ์˜ ํšŒ์‚ฌ์ด๋ฆ„์ด๋‚˜ ํŒŒํŠธ๋„ˆ ์ด๋ฆ„์€ โ€˜์™•์ขŒ์˜ ๊ฒŒ์ž„โ€™ ์˜ ์ด๋ฆ„์œผ๋กœ ์ต๋ช…์ฒ˜๋ฆฌ ํ–ˆ๋‹ค)
ํ•˜๋‚˜์˜ ์ฃผ๋ฌธ์— ์—ฌ๋Ÿฌ ์ƒํ’ˆ์ด ์žˆ์„ ์ˆ˜ ์žˆ์Œ์„ ์ฐธ๊ณ !

Data Schema

Inspiration

Here are some inspiration for possible outcomes from this dataset.
NLP :ย This dataset offers a supreme environment to parse out the reviews text through its multiple dimensions.
Clustering : Some customers didn't write a review. But why are they happy or mad?
Sales Prediction : With purchase date information you'll be able to predict future sales.
Delivery Performance : You will also be able to work through delivery performance and find ways to optimize delivery times.
Product Quality : ย Enjoy yourself discovering the products categories that are more prone to customer insatisfaction.
Feature Engineering : ย Create features from this rich dataset or attach some external public information to it.

Olist_customers_dataset

At our system each order is assigned to a unique customer_id. This means that the same customer will get different ids for different orders.
โ€ข
customer_unique_id : key to the orders dataset. Each order has a unique customer_id. (๊ฐ order ๊ฑด๋งˆ๋‹ค ๋ถ€์—ฌ๋˜๋Š” ๊ณ ๊ฐ id โ†’ ๊ฐ™์€ ๊ณ ๊ฐ์ด ์ฃผ๋ฌธ์„ ์—ฌ๋Ÿฌ๋ฒˆ ํ•  ๊ฒฝ์šฐ ๋‹ค๋ฅธ id ๋ถ€์—ฌ)
โ€ข
customer_id : ๊ณ ๊ฐ ๊ณ ์œ  ๋ฒˆํ˜ธ (์ฃผ๋ฌธํ•œ ๊ณ ๊ฐ id, ์ค‘๋ณต๋œ ๊ฐ’์€ ์—†์–ด์•ผ ์ •์ƒ, key๊ฐ’)
โ€ข
customer_zip_code_prefix : ๊ณ ๊ฐ ์šฐํŽธ๋ฒˆํ˜ธ
โ€ข
customer_city : ๊ณ ๊ฐ ๋ฐฐ์†ก์ง€ ์ค‘ ๋„์‹œ์ •๋ณด
โ€ข
customer_state : ๊ณ ๊ฐ ๋ฐฐ์†ก์ง€ ์ค‘ ์ฃผ ์ •๋ณด
์œ„ ํ…Œ์ด๋ธ”์„ ํ†ตํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ถ„์„์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค 1. ์ง€์—ญ๋ณ„ ์ฃผ๋ฌธ๊ฑด ๋ถ„ํฌ ๋น„๊ต โ†’ ์–ด๋–ค ์ง€์—ญ์ด ์ฃผ๋ฌธ๊ฑด์ˆ˜๊ฐ€ ๋งŽ์€์ง€, ์–ด๋–ค ๊ณ ๊ฐ์ด ์ฃผ๋ฌธ์„ ๋งŽ์ด ํ•˜๋Š”์ง€ ์ •๋„

Olist_sellers_dataset

data about the sellers that fulfilled orders made at Olist. Use it to find the seller location and to identify which seller fulfilled each product.
โ€ข
seller_id : ํŒ๋งค์ž ๊ณ ์œ  ๋ฒˆํ˜ธ
โ€ข
seller_zip_code_prefix : ํŒ๋งค์ž ์šฐํŽธ๋ฒˆํ˜ธ
โ€ข
seller_city : ํŒ๋งค์—…์ฒด ๋„์‹œ ์ •๋ณด
โ€ข
seller_state : ํŒ๋งค์—…์ฒด ์ฃผ ์ •๋ณด
์œ„ ํ…Œ์ด๋ธ”์„ ํ†ตํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ถ„์„์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. ์–ด๋–ค ํŒ๋งค์—…์ฒด๊ฐ€ ์ฃผ๋ฌธ๊ฑด์ˆ˜๊ฐ€ ๋งŽ์€์ง€

Olist_geolocation_dataset

Brazilian zip codes and its lat/lng coordinates. Use it to plot maps and find distances between sellers and customers.
ย  Olist_customers_dataset ์˜ ๊ณ ๊ฐ ์šฐํŽธ ๋ฒˆํ˜ธ์™€ ์กฐ์ธํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ™•์ธ โ†’ ์—ฐ๊ฒฐ๋œ๋‹ค๋ฉด ๊ณ ๊ฐ์˜ ์ง€๋ฆฌ์  ์œ„์น˜๋ฅผ ์‹œ๊ฐํ™”ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ
ย  Olist_sellers_dataset ์˜ ํŒ๋งค์ž ์šฐํŽธ ๋ฒˆํ˜ธ์™€ ์กฐ์ธํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ํ™•์ธ โ†’ ์—ฐ๊ฒฐ๋œ๋‹ค๋ฉด ํŒ๋งค์—…์ฒด์˜ ์ง€๋ฆฌ์  ์œ„์น˜๋ฅผ ์‹œ๊ฐํ™”ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ
โ€ข
geolocation_zip_code_prefix : ์šฐํŽธ ๋ฒˆํ˜ธ
โ€ข
geolocation_lat : latitude
โ€ข
geolocation_lng : longtitude
โ€ข
geolocation_city : ๋„์‹œ ์ด๋ฆ„
โ€ข
geolocation_state : ์ฃผ ์ด๋ฆ„
์œ„ ํ…Œ์ด๋ธ”์€ ๊ทธ ์ž์ฒด๋กœ ์‚ฌ์šฉํ•˜๊ธฐ๋ณด๋‹ค ์ฃผ๋ฌธ ๊ณ ๊ฐ ๋ฐ์ดํ„ฐ์™€ ์ฃผ๋ฌธ ํŒ๋งค์—…์ฒด ๋ฐ์ดํ„ฐ์™€ ์กฐ์ธํ•ด์„œ(zip_code) ์‚ฌ์šฉํ•˜๋ฉด ์ง€๋ฆฌ์ ์œผ๋กœ ์‹œ๊ฐํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค.

Olist_orders_dataset

the core dataset. From each order you might find all other information. Each order has a unique customer_id.
โ€ข
order_id : ๊ณ ์œ ํ•œ ์ฃผ๋ฌธ ๋‚ด์—ญ(Key)
โ€ข
customer_id : ์ฃผ๋ฌธํ•œ ๊ณ ๊ฐ ๊ณ ์œ  id (๊ฐ™์€ ๊ณ ๊ฐ์ด ์ฃผ๋ฌธ์„ ์—ฌ๋Ÿฌ๋ฒˆ ํ• ์ˆ˜๋„ ์žˆ์œผ๋ฏ€๋กœ ํ•ด๋‹น ๋ณ€์ˆ˜๋Š” ์ค‘๋ณต๋  ์ˆ˜ ์žˆ๋‹ค)
โ€ข
order_status : ์ฃผ๋ฌธ ์ƒํƒœ (๋ฐฐ์†ก ์™„๋ฃŒ / ๋ฐฐ์†ก์ค‘ / ๊ทธ์™ธ)
โ€ข
order_purchase_timestamp : ๊ตฌ๋งค ์‹œ๊ฐ
โ€ข
order_approved_at : ์ฃผ๋ฌธ ์™„๋ฃŒ ์‹œ๊ฐ
โ€ข
order_delivered_carrier_at : ๋ฐฐ์†ก์—…์ฒด ์ „๋‹ฌ ์‹œ๊ฐ
โ€ข
order_delivered_customer_date : ๋ฐฐ์†ก์™„๋ฃŒ ์‹œ๊ฐ
โ€ข
order_estimated_delivery_date : ๋ฐฐ์†ก์™„๋ฃŒ ์˜ˆ์ƒ ์‹œ๊ฐ(๊ณ ๊ฐ์ด ๊ตฌ๋งค์‹œ ์•Œ๋ ค์คŒ)
์œ„ ํ…Œ์ด๋ธ”์„ ํ†ตํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ถ„์„์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. ์‹œ๊ฐ„๋Œ€๋ณ„ ๊ตฌ๋งค ๊ฑด์ˆ˜ ๋น„๊ต โ†’ ์–ด๋–ค ์‹œ๊ฐ„๋Œ€์— ๊ตฌ๋งค๊ฐ€ ๋นˆ๋ฒˆํ•œ์ง€ 2. ์˜ˆ์ •๋ฐฐ์†ก๋‚ ์งœ๋ณด๋‹ค ๋Šฆ์–ด์ง„ ๊ฑด์ˆ˜๊ฐ€ ์žˆ๋Š”์ง€, ์žˆ๋‹ค๋ฉด ํ•ด๋‹น ์ง€์—ญ์ด ์–ด๋””์ธ์ง€ ํ™•์ธ(customer_id ๋กœ ์—ฐ๊ฒฐ)

Olist_order_items_dataset

data about the items purchased within each order.
๊ฐ ์ฃผ๋ฌธ๋ณ„ ์ฃผ๋ฌธ ์ƒํ’ˆ ์ˆ˜(order_item_id) ๊ฐ€ ์žˆ๊ณ , ์ƒํ’ˆ ๊ณ ์œ  ์•„์ด๋””(product_id)๊ฐ€ ์žˆ๊ณ , โ€ฆ ย key๊ฐ’์€ ์—†์„ ์ˆ˜ ์žˆ๋‹ค.
โ€ข
order_id : ์ฃผ๋ฌธ id(ํ–‰๋ณ„๋กœ ์ค‘๋ณต๋  ์ˆ˜๋Š” ์žˆ๋‹ค)
โ€ข
order_item_id : ์ฃผ๋ฌธ ์ƒํ’ˆ ์ˆ˜
โ€ข
product_id : ์ƒํ’ˆ id
โ€ข
seller_id : ํŒ๋งค์ž ๊ณ ์œ  id
โ€ข
shipping_limit_date : ๋ฐฐ์†ก ์—…์ฒด ์ „๋‹ฌ ๋งˆ๊ฐ ์‹œ๊ฐ
โ€ข
price : ์ƒํ’ˆ ๊ฐ€๊ฒฉ
โ€ข
freight_value : ์ƒํ’ˆ ์šด์ž„๋น„
์œ„ ํ…Œ์ด๋ธ”์„ ํ†ตํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ถ„์„์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. ๋ฐฐ์†ก์ด ์ง€์—ฐ๋์„ ๊ฒฝ์šฐ, ํŒ๋งค์—…์ฒด์—์„œ ๋ฐฐ์†ก์—…์ฒด์— ์ „๋‹ฌํ•˜๋Š” ๊ณผ์ •์—์„œ ์ง€์—ฐ์ด ๋๋Š”์ง€(olist_orders_dataset ๊ณผ ์กฐ์ธ) ํ™•์ธํ•˜๊ณ , ์–ด๋–ค ํŒ๋งค์—…์ฒด์ธ์ง€ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

Olist_products_dataset

data about the products sold by Olist.
โ€ข
product_id : ์ƒํ’ˆ id
โ€ข
product_category_name : ์ƒํ’ˆ ์นดํ…Œ๊ณ ๋ฆฌ(ํฌ๋ฅดํˆฌ๊ฐˆ์–ด)
โ€ข
product_name_lenght : ์ƒํ’ˆ ์ด๋ฆ„์—์„œ ์ถ”์ถœํ•œ ํŠน์ง• ์ˆ˜
โ€ข
product_description_lenght : ์ƒํ’ˆ ์„ค๋ช…์—์„œ ์ถ”์ถœํ•œ ํŠน์ง• ์ˆ˜
โ€ข
product_photos_qty : ์‚ฌ์ง„๊ณผ ํ•จ๊ป˜ ์˜ฌ๋ผ๊ฐ„ ํšŸ์ˆ˜
โ€ข
product_weight_g : ์ƒํ’ˆ์˜ ๋ฌด๊ฒŒ(๋‹จ์œ„: ๊ทธ๋žจ)
โ€ข
product_length_cm : ์ƒํ’ˆ์˜ ๊ฐ€๋กœ๊ธธ์ด(๋‹จ์œ„ : cm)
โ€ข
product_height_cm : ์ƒํ’ˆ์˜ ๋†’์ด๊ธธ์ด(๋‹จ์œ„ : cm)
โ€ข
product_width_cm : ์ƒํ’ˆ์˜ ํญ๊ธธ์ด(๋‹จ์œ„ : cm)
์œ„ ํ…Œ์ด๋ธ”์„ ํ†ตํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ถ„์„์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. ์‚ฌ์ง„์ด ์ฒจ๋ถ€๋œ ํšŸ์ˆ˜์™€ ์ฃผ๋ฌธ ๊ฑด์ˆ˜์˜ ์ƒ๊ด€๊ด€๊ณ„ ( ์‚ฌ์ง„ ์ฒจ๋ถ€๊ฐ€ ๋งŽ์„์ˆ˜๋ก ์ฃผ๋ฌธ ๊ฑด์ˆ˜๊ฐ€ ๋งŽ์„๊นŒ?) 2. ์ƒํ’ˆ ์šด์ž„๋น„์™€ ์ƒํ’ˆ์˜ ํŠน์„ฑ๋“ค(๋ฌด๊ฒŒ, ๊ฐ€๋กœ๊ธธ์ด, ๋†’์ด๊ธธ์ด, ํญ๊ธธ์ด)๊ณผ์˜ ์ƒ๊ด€๊ด€๊ณ„ (์ƒํ’ˆ์˜ ์–ด๋–ค ๊ฐ’์ด ์ƒํ’ˆ ์šด์ž„๋น„๋ฅผ ๊ฒฐ์ •ํ•˜๋Š”๋ฐ ์œ ํšจํ•˜๊ฒŒ ์ž‘์šฉํ• ๊นŒ?) 3. ์ƒํ’ˆ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ์ƒํ’ˆ ์šด์ž„๋น„์˜ ๋ถ„ํฌ๋Š” ๋Œ€๋žต ์–ด๋–จ๊นŒ?

Product_category_name_translation

Translates the product_category_name to english.
โ€ข
product_category_name : ์นดํ…Œ๊ณ ๋ฆฌ ์ด๋ฆ„(ํฌ๋ฅดํˆฌ๊ฐˆ์–ด)
โ€ข
product_category_name_english : ์นดํ…Œ๊ณ ๋ฆฌ ์ด๋ฆ„(์˜์–ด)
์œ„ Olist_products_dataset ํ…Œ์ด๋ธ”๊ณผ ์กฐ์ธํ•ด์„œ ์ƒํ’ˆ ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ์˜์–ด๋กœ ํ™•์ธ ๊ฐ€๋Šฅ

Olist_order_payments_dataset

data about the orders payment options.
โ€ข
order_id : ์ฃผ๋ฌธ id
โ€ข
payment_sequential : ๊ณ ๊ฐ๋ณ„ ์ €์žฅ๋œ ๊ตฌ๋งค ๋ฐฉ๋ฒ• ์ˆ˜
โ€ข
payment_type : ์„ ํƒ๋œ ๊ตฌ๋งค ๋ฐฉ๋ฒ•
โ€ข
payment_installments : ๊ณ ๊ฐ๋ณ„ ์„ ํƒ๋œ ๊ตฌ๋งค ์„ค์น˜ ์ˆ˜
โ€ข
payment_value : ๊ตฌ๋งค ๊ธˆ์•ก
์œ„ ํ…Œ์ด๋ธ”์„ ํ†ตํ•ด์„œ ๋‹ค์Œ๊ฐ€ ๊ฐ™์€ ๋ถ„์„์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. ์ž์ฃผ ์‚ฌ์šฉ๋˜๋Š” ๊ตฌ๋งค ๋ฐฉ๋ฒ•์€ ์–ด๋–ค ๊ฑด์ง€ ํ™•์ธํ•ด๋ณผ ์ˆ˜ ์žˆ๋‹ค.

Olist_order_reviews_dataset

data about the reviews made by the customers. the customer gets a satisfaction survey by email where he can give a note for the purchase experience and write down some comments.
โ€ข
review_id : ๋ฆฌ๋ทฐ id
โ€ข
order_id : ์ฃผ๋ฌธ id
โ€ข
review_score : 1~ 5 ์ ์˜ ๋งŒ์กฑ๋„
โ€ข
review_comment_title : ์‚ฌ์šฉ์ž ์ฝ”๋ฉ˜ํŠธ ํƒ€์ดํ‹€(ํฌ๋ฅดํˆฌ๊ฐˆ์–ด)
โ€ข
review_comment_message : ์‚ฌ์šฉ์ž ์ฝ”๋ฉ˜ํŠธ ๋ฉ”์„ธ์ง€(ํฌ๋ฅดํˆฌ๊ฐˆ์–ด)
โ€ข
review_creation_date : ๋ฆฌ๋ทฐ ์ž‘์„ฑํผ ์ „๋‹ฌ ๋‚ ์งœ
โ€ข
review_answer_timestamp : ๋ฆฌ๋ทฐ ์ž‘์„ฑ ๋‚ ์งœ
์œ„ ํ…Œ์ด๋ธ”์„ ํ™œ์šฉํ•ด์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ถ„์„์„ ์ง„ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. 1. ํ…์ŠคํŠธ ๋ถ„์„์ด ๊ฐ€๋Šฅํ•˜๋‹ค๋ฉด ๋ฆฌ๋ทฐ ํƒ€์ดํ‹€, ์ฝ”๋ฉ˜ํŠธ ๋ฉ”์„ธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด์„œ ์–ด๋–ค ํŒ๋งค์—…์ฒด์˜ ์–ด๋–ค ์ƒํ’ˆ์ด ๊ตฌ์ฒด์ ์œผ๋กœ ์–ด๋–ค ํ‰๊ฐ€๋ฅผ ๋ฐ›๊ณ  ์žˆ๋Š”์ง€ ํ™•์ธ ๊ฐ€๋Šฅ 2. ์–ด๋–ค ํŒ๋งค์—…์ฒด์˜ ์ƒํ’ˆ์ด ์‚ฌ์šฉ์ž ๋งŒ์กฑ๋„๊ฐ€ ๋†’์€์ง€(ํ…์ŠคํŠธ ๋ถ„์„์„ ํ•˜์ง€ ์•Š์œผ๋ฉด ๊ตฌ์ฒด์ ์œผ๋กœ ์–ด๋–ค ์ด์œ ์—์„œ ํ•ด๋‹น ์ ์ˆ˜๋ฅผ ๋ฐ›์•˜๋Š”์ง€๋Š” ์•Œ ์ˆ˜ ์—†๋‹ค)

< ๋ถ„์„ ์ฃผ์ œ ๋ฆฌ์ŠคํŠธ >

โ€ข
์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ๋งค์ถœ ์ฃผ๋„ํ•˜๊ณ  ์ƒํ’ˆ ํ™•์ธ
โ€ข
๋งค์ถœ ํŠธ๋ Œ๋“œ ํŒŒ์•…(์›”๋ณ„, ์ฃผ๋ณ„, ์—ฐ๋„๋ณ„, ์‹œ๊ฐ„๋Œ€)
โ€ข
๋ฐฐ์†ก ๊ด€๋ จ ๋ถ„์„ โ†’ cs(๊ณ ๊ฐ ๋งŒ์กฑ๋„), ์ง€์—ฐ๋ฌธ์ œ ๊ฐœ์„ ์  ๋„์ถœ
โ€ข
ํ•ต์‹ฌ ์…€๋Ÿฌ ๋ถ„์„. (๊ณ ๊ฐ์ด ์ฃผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ํŒ๋งค์—…์ฒด๊ฐ€ ์–ด๋”˜์ง€) โ†’ ํ‰์ ๋„ ์—ฐ๊ฒฐ์ง€์–ด์„œ ํ™•์ธ